Tetrahedron Letters No. 31, pp 2695 - 2698, 1976. Pergamon Press. Printed in Great Britain.

A NOVEL BIOSYNTHETIC STUDY OF GRISEOFULVIN BY ²H NUCLEAR MAGNETIC RESONANCE:

DETERMINATION OF DEUTERIUM INCORPORATION FROM [2-2H2]-ACETATE BY PENICILLIUM URTICAE

Yoshihiro Sato^{*} and Taiko Oda

Kyoritsu College of Pharmacy, Shibakoen, Minato-ku, Tokyo, Japan, 105

and Hazime Saito*

National Cancer Center Research Institute, Tsukiji 5-chome, Chuo-ku, Tokyo, Japan, 104

(Received in Japan 21 May 1976; received in UK for publication 15 June 1976)

In the elucidation of the biosynthetic pathways, the use of 13 C nmr combined with 13 C-labelprecursors has been common practice to locate the enriched site and determine the skeletonformation.¹ This method, however, does not provide an unambiguous information on biosynthetic pathways involving hydrogen. For this purpose, the use of 2 H nmr in case of 2 H-labeled precursors seems to have potential utility for the location of deuterium incorporation, together with mass-spectrometric analysis.² Although very few works have been done on this subject³ partly because of fear of lower sensitivity and wider line-width of deuterium signal, recent developments of the pulsed Fourier transform nmr method have enabled us to study various types of 2 H nmr to chemical and biological problems.⁴ We now wish to demonstrate that direct evidence of deuterium incorporation and its stereochemical course on biosynthesis of griseofulvin are obtained from 2 H nmr when $[2-{}^{2}$ H₃]-acetate is used as a tracer for the biosynthesis, which is in good agreement with the previous studies using $[2-{}^{3}$ H, 14 C]-acetate.⁵

²H nmr spectra were recorded by a JEOL PFT-100/EC-100 pulsed Fourier transform spectrometer operating at 15.28 MHz with proton-noise decoupling. All samples of chloroform solution were contained in 10 mm o.d. sample tubes. Field-frequency control was performed on the internal signal of C₆F₆, which was added by amounts of a few drops in the chloroform solution. The biosynthetically deuterated griseofulvin (1a) was prepared from sodium $[2-^{2}H_{3}]$ -acetate by <u>Penicillium urticae</u> as previously reported ^{2,5}(d₀ 61.4, d₁ 4.3, d₂ 5.9, d₃ 8.6, d₄ 10.6, d₅ 6.4 $\frac{1}{2}$, and d_7 and $d_8 < 1$ % by mass-spectrometry). In order to perform unambiguous assignment of 2 H signals, a series of selectively deuterated griseofulvin samples were prepared in the following ways (Chart 1). Griseofulvic acid⁶ obtained by hydrolysis of la (250 mg) was submitted to methylation with CH_2N_2 in CH_3OH -ether to afford a mixture of 1b and deuterated isogriseofulvin, the former of which was separated by silica-gel column chromatography (80 mg) (d_0 56.7, d_1 6.9, d_2 11.6, d_3 14.8, d_4 6.6, d_5 2.8 and d_6 1 %). [5',5'-²H]-Griseofulvin (1c) was prepared under essentially the same conditions reported⁷(d_0 21.5, d_1 53.6 and d_2 24.9 %). A solution of undeuterated griseofulvic acid in CH_3OH -ether was methylated with $[^2H]$ - $CH_2N_2^8$ to afford 1d (d₀ 68.8 d₁ 24.8, and d₂ 6.1 %). Finally, heating the griseofulvic acid in $CHCl_3$ containing D_2O for 1 hr followed by evaporation of solvent under reduced pressure gave a deuterated acid, which was subsequently methylated with CH_2N_2 in CH_3OD -ether to afford le (d₀ 2.4, d₁ 19.2, d₂ 71.5, and d₃ 5.0 %).

In Figure 1A is shown a 2 H nmr spectrum of biosynthetically deuterated griseofulvin (<u>1a</u>) in CHCl₃ solution (4 w/v %). The lowermost sharp signal arises from CDCl₃ occuring in CHCl₃ of natural abundance (0.02 %). The assignment of 2 H nmr signals is straightforward to that of 1 H nmr, since chemical-shift displacements due to isotope effect are usually negligible. In this communication, however, the peak-assignments were made with the aid of 2 H signals of selectively deuterated griseofulvin samples described above. First, the peaks of 2'-OCH₂D and 5-D are as-

signed by comparing ²H mur spectrum of]a with that of]b (Figure 18), in which deuteriums are removed at 2'-methoxyl and 3'-position. The assignment of 2'-OCH₂D signal is also confirmed by employing [2'-OCH₂D, 3'-D]-griseofulvin (Ie, Figure 1E) and [2'-OCHD₂]-griseofulvin (Id, Figure 1D) as the reference samples. In comparison with ²H nmr of 1c (Figure 1C), deuterium at 5'-position is confirmed to have been incorporated exclusively at α configuration. This result is in agreement with the previous studies on [2-³H, ¹⁴C]-acetate tracer.⁵ Further, ²H T₁ values show that deuteriums incorporated at methyl or methoxyl groups where internal rotation will be allowed in addition to overall molecular tumbling are found to give larger T₁ values⁹(86,106 and 104 msec for 6'-CD₃, 2'-OCH₂D and 4,6-OCH₂D, respectively) compared with 5' α -D and 3'-D (45 and 46 msec, respectively).

In contrast to the case of ¹³C nmr, nuclear Overhauser enhancement by proton-decoupling is negligible for ²H nuclei where the guadrupole relaxation mechanism is dominant. Accordingly, integrated peak-intensities are proportional to the extent of deuterium-incorporation by biosynthe-The relative ²H peak-intensities of la are: 44 % (6'-CD₃), 23 % (5' α -D), 3.3 % (2'-OCH₂D), sis. 6.3 % (4,6-OCH₂D) and 24 % (3'-D and 5-D). The comparison of the peak-intensities between 6^{4} -CD₂ and 5' α -D strongly suggests that 6' position might be the instead of the. This would be easily proved if doubling of the ²H signal due to geminal ²H-¹H spin coupling were observed. Unfortunately, no such a fine structure was observed in the proton-coupled ²N spectrum recorded under the condition of turning-off proton-becoupler (Figure 2A). אל אד expected that this situation arises when peak-splittings due to $\frac{2}{4}$ is spin-couplings (the splitting of which being 1/8 of corresponding]+- H couplings { are buried within relatively broader line-width. Employing 1/ml, as a theoretical limit of a line-width free from various broadening factors such as magnetic inhomogeneity and unresolved ${}^{2}H$ - ${}^{1}H$ spin-couplings, it is predicted that no fine structure could be observed unless otherwise $\pi_{\tau_{JDH}} \gg 1.^{10}$ Here J_{DH} stands for 2 H spin coupling constant. In our

present case, $\pi T_1 J_{DH} \sim 0.5$ is obtained from the values of $T_1 \sim 100$ msec and $J_{DH} \sim 1.7$ Hz. This value predicts that proton-decoupling experiment will alter spectral pattern to some extent. In fact, the peak heights of 2'-OCH₂D and 4,6-OCH₂D are found to be increased by amounts of 27 % and 21 %, respectively, when compared with those of proton-coupled spectrum (Figure 2A and 2B). Therefore, the enhanced peak-height of 6'-methyl by amount of 17 % suggests that the deuterium-incorporation at 6'-position is apparently like CHD₂.¹¹ Further, it is of interest to note that 9.6 % of deuterium is incorporated at unexpected methoxyl groups (4,6- and 2'-OCH₂D). Such an analysis could not readily be performed by other physical techniques.

In conclusion, it is proved that ²H nmr is very powerful nondestructive method to study biosynthetic pathways involving hydrogen.

<u>Acknowledgements</u>. Y.S and T.O. are grateful to Professor Emeritus K.Tsuda for his encouragement throughout this work. H.S. is grateful to Dr.C.Nagata for his encouragement and Mr.T.Ohki for his helpful assistance.

References and Notes

- (1) U.Sequin and A.I.Scott, <u>Science, 186</u>, 101(1975)
- (2) From the molecular peak ion patterns: Y.Sato and T.Oda, Abstract of "2nd Symposium on the Analytical Chemistry of Biological Substances", p.84, Fukuoka, Japan, 1975
- B.W.Bycroft, C.M.Wels, K.Corbett and D.A.Lowe, <u>J.Chem.Soc.Chem.Commun.</u>,123(1975); G.Arvidson,
 G.Lindblom and T.Drakenberg, FEBS Lett.,54, 249(1975)
- (4) P.Diehl and Th.Leipert, <u>Helv.Chim.Acta</u>, <u>47</u>, 545(1964); P.Diehl, in <u>Nuclear Magnetic Resonance</u> <u>Spectroscopy of Nuclei Other than Protons</u>, p.275, ed. by T.Axenrod and G.A.Webb, Wiley-Interscience, New York, N.Y., 1974; H.H.Mantsch, H.Saitô and I.C.P.Smith, in <u>Progress in Nuclear</u> Magnetic Resonance Spectroscopy, Pergamon Press, in press.
- (5) Y.Sato, T.Machida(Seki) and T.Oda, <u>Tetrahedron Lett.</u>, 4571(1975); To obtain griseofulvin with a high deuterium content biosynthetically, seven-days-old mycelia of <u>P</u>. <u>urticae</u> were used in twice for first 24 hr and subsequent second 24 hr incubation experiments, in which the media were replaced by a new one containing $[2^{-2}H_2]$ -acetate tracer.
- (6) A sample of combined griseofulvin in several fermentations was used for the hydrolysis.
- (7) S.G.Levin and R.E.Hicks, Tetrahedron Lett., 311(1971)
- (8) $[^{2}H]$ -diazomethane-ether complex was obtained by treatment of nitrosomethylurea in ether with 50 % NaOH-D₂O solution.
- (9) H.H.Mantsch, H.Saitô, L.C.Leitch and I.C.P.Smith, J.Amer.Chem.Soc., 96, 256(1974)
- (10) H.Saitô and H.H.Mantsch, unpublished. It should be noted that proton-decoupling experiment does not alter spectral feature in the case of $\pi T_1 J_{DH} \ll 1$.
- (11) Data of mass-spectrometric analysis of fragment ion,* m/e 69 $(CH_3-CH=CH-C=0^+)$, together with the relative intensity of ²H nmr at 5' α and 6'-methyl suggest that 6'-methyl deuterated consists of 75-89 % of 6'-CHD₂ and 14-22 % of 6'-CD₃ with a slight possibility for the presence of 6'-CH₂D. However, the mass data of griseofulvin sample obtained by short-time incubation suggest that 6'-methyl deuterated consists of CD₃ component only. *) J.A. Ballantine and R.G.Fenwich, Organic Mass Spectrometry, <u>2</u>, 1145(1969)